
Image Captioning

By Spencer Au, Ethan Tarnarider, 
Daniel Boudagian



Overview

● Generating Captions given an image
○ Using the Microsoft COCO (common objects in context) image dataset

■ Essentially pictures of all sorts of everything day things

● People, cars, beaches, snow etc, with captions for every image

● We accomplish this by feeding the images into a pre-trained CNN, efficientnetB0 with no 

head, solely for feature extraction, then we feed the images, along with their captions into 

an LSTM for training on captioning any image

● The final result is 10 random captioned images from the dataset



Dataset

● Trained on MS-COCO (Common Objects in Context) 2017 25GB dataset

● 330K images (>200K labeled)

● 1.5 million object instances

● 80 object categories

● 91 stuff categories

● 5 captions per image

● Reshaped each image to 224 x 224 pixels

● Can’t really use image augmentation due to the task of image captioning



CNN for Feature Extraction

● Uses EfficientNetB0 
○ Without top layer

○ Using imagenet weights

○ Using average pooling

● Primarily chosen due to how lightweight the model is 
○ When processing hundreds of thousands of images we looked for a solid mix between speed and 

accuracy



Model Architecture

● We used an LSTM to take in the results of the CNN, along with the captions 
○ We used an LSTM specifically because it excels at sequences and has the short term memory

■ We thought this would be best for generating our captions

● We used layers such as embedding, dropout and dense layers to drive the model
○ Embedding to reduce dimensions of input while keeping the same meanings and mappings

○ Dropout to regularize

○ And dense layer to select proper words

 





Training 

● Loss Function - Categorical Cross Entropy 

● Optimizer - Adam with default initial learning rate

● Metrics - accuracy

● Batch Size of 10

● Vocab Size of 15,000

● Sequence Max Length of 52

● Utilizing Early Stopping with Patience of 5

● Train for 100 Epochs

● Stopped at 22 Epochs



Results



Generated Captions



Proposed Enhancements

● GradCAM or possibly n-Best/n-Worst for Model Interpretability

● Use a performance metrics better suited like BLEU, METEOR, or CIDEr

● Experiment with other base models for CNN portion

● Experiment with different regularization methods for slight overfitting

● Experimenting with different architecture layers for Caption Generation Model

● Hyperparameter Tuning via Keras Tuner, etc

● Adding object detection to avoid false mentions of objects

● Figure out why certain words seem to show up in almost every second or third caption
○ Words such as scissors or clocks/clock tower seem to appear a lot despite being irrelevant in most 

images 


