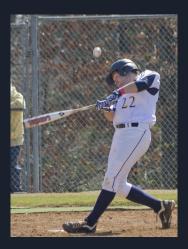
Image Captioning

By Spencer Au, Ethan Tarnarider, Daniel Boudagian

Overview


- Generating Captions given an image
 - \circ \qquad Using the Microsoft COCO (common objects in context) image dataset
 - Essentially pictures of all sorts of everything day things
 - People, cars, beaches, snow etc, with captions for every image
- We accomplish this by feeding the images into a pre-trained CNN, efficientnetBO with no head, solely for feature extraction, then we feed the images, along with their captions into an LSTM for training on captioning any image
- The final result is 10 random captioned images from the dataset

Dataset

- Trained on MS-COCO (Common Objects in Context) 2017 25GB dataset
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- Reshaped each image to 224 x 224 pixels
- Can't really use image augmentation due to the task of image captioning

CNN for Feature Extraction

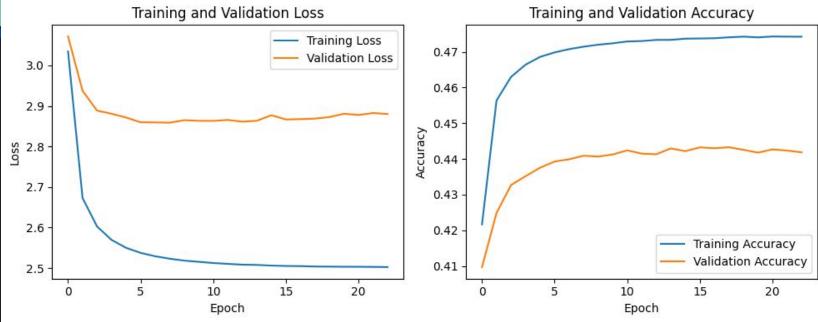
- Uses EfficientNetB0
 - Without top layer
 - Using imagenet weights
 - Using average pooling
- Primarily chosen due to how lightweight the model is
 - When processing hundreds of thousands of images we looked for a solid mix between speed and accuracy

Model Architecture

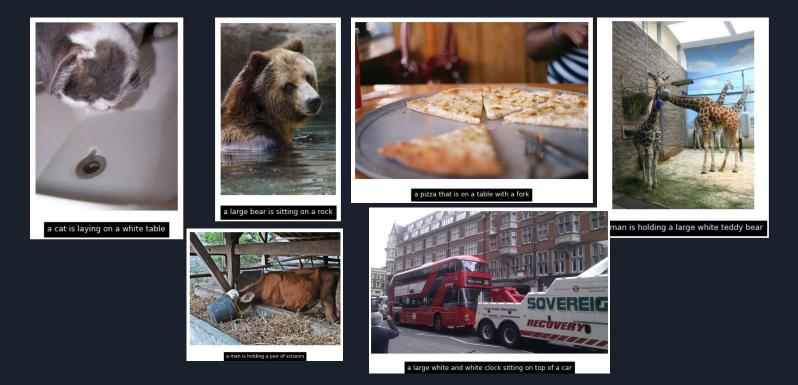
- We used an LSTM to take in the results of the CNN, along with the captions
 - We used an LSTM specifically because it excels at sequences and has the short term memory
 - We thought this would be best for generating our captions
- We used layers such as embedding, dropout and dense layers to drive the model
 - Embedding to reduce dimensions of input while keeping the same meanings and mappings
 - Dropout to regularize
 - And dense layer to select proper words

Layer (type)	Output Shape	Param #	Connected to
input_4 (InputLayer)	[(None, 52)]	0	0
input_3 (InputLayer)	[(None, 1280)]		D
embedding (Embedding)	(None, 52, 128)	3588224	['input_4[0][0]']
dropout (Dropout)	(None, 1280)	0	['input_3[0][0]']
dropout_1 (Dropout)	(None, 52, 128)		['embedding[0][0]']
dense (Dense)	(None, 128)	163968	['dropout[0][0]']
lstm (LSTM)	(None, 128)	131584	['dropout_1[0][0]']
add (Add)	(None, 128)		['dense[0][0]', 'lstm[0][0]']
dense_1 (Dense)	(None, 128)	16512	['add[0][0]']
dense_2 (Dense)	(None, 28033)	3616257	['dense_1[0][0]']

Model: "model_1"


Layer (type)	Output Shape	Param #	Connected to
input_4 (InputLayer)	[(None, 52)]	0	[]
input_3 (InputLayer)	[(None, 1280)]	0	п
embedding (Embedding)	(None, 52, 128)	3588224	['input_4[0][0]']
dropout (Dropout)	(None, 1280)	0	['input_3[0][0]']
dropout_1 (Dropout)	(None, 52, 128)	0	['embedding[0][0]']
dense (Dense)	(None, 128)	163968	['dropout[0][0]']
lstm (LSTM)	(None, 128)	131584	['dropout_1[0][0]']
add (Add)	(None, 128)	0	['dense[0][0]', 'lstm[0][0]']
dense_1 (Dense)	(None, 128)	16512	['add[0][0]']
dense_2 (Dense)	(None, 28033)	3616257	['dense_1[0][0]']
Total params: 7,516,545 Trainable params: 7,516,545 Non-trainable params: 0			

Training


- Loss Function Categorical Cross Entropy
- Optimizer Adam with default initial learning rate
- Metrics accuracy
- Batch Size of 10
- Vocab Size of 15,000
- Sequence Max Length of 52
- Utilizing Early Stopping with Patience of 5
- Train for 100 Epochs
- Stopped at 22 Epochs

Results

Generated Captions

Proposed Enhancements

- GradCAM or possibly n-Best/n-Worst for Model Interpretability
- Use a performance metrics better suited like BLEU, METEOR, or CIDEr
- Experiment with other base models for CNN portion
- Experiment with different regularization methods for slight overfitting
- Experimenting with different architecture layers for Caption Generation Model
- Hyperparameter Tuning via Keras Tuner, etc
- Adding object detection to avoid false mentions of objects
- Figure out why certain words seem to show up in almost every second or third caption
 - Words such as scissors or clocks/clock tower seem to appear a lot despite being irrelevant in most images